Learn Before
  • variance and standard deviation

Variance and Standard Error of an Estimator

The variance of an unbiased estimator θ^\hat{\theta} is defined as: Var(θ^)=E((θ^E(θ^))2)Var(\hat{\theta}) = \mathbb{E}((\hat{\theta} - \mathbb{E}(\hat{\theta}))^2) where E\mathbb{E} is the expected value function.

The Standard Error of an unbiased estimator θ^\hat{\theta} is simply the positive square root of the Variance: SE(θ^)=Var(θ^)SE(\hat{\theta}) = \sqrt{Var(\hat{\theta})}

0

1

4 years ago

References


Tags

Data Science

Related
  • Variance and Standard Error of an Estimator

Learn After
  • Example for the Variance of an Estimator